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ABSTRACT

A one-step catalytic asymmetric access to r,â unsaturated δ-lactones is described, using a vinylogous Mukaiyama-aldol reaction between a
γ-substituted dienolate and various aldehydes in the presence of Carreira catalyst CuF‚(S)-tolBinap. This methodology has been further
applied to a straightforward access to the Prelog-Djerassi lactone.

The R,â unsaturated and saturatedδ-lactones are found in
an impressive number of natural and unnatural products
possessing interesting biological activities.1-9 These com-

pounds are also useful chiral building blocks, such as for
example the Prelog-Djerassi lactone.10,11Efficient asymmetric
syntheses of such lactones have been described but required
the use of a stoichiometric amount of chiral auxiliary and/
or a multiple-step sequence.12-18(1) (a) Davis-Coleman, M. T.; Rivett, D. E. A. InProgress in the

Chemistry of Organic Natural Products; Herz, W., Grisebach, H., Kirby,
G. W., Tamm, Ch., Eds.; Springer: New York, 1989; 55, pp 1-35. (b)
Collet, L. A.; Davis-Coleman, M. T.; Rivett, D. E. A. InProgress in the
Chemistry of Organic Natural Products; Herz, W., Falk, H., Kirby, G. W.,
Moore, E., Tamm, Ch., Eds.; Springer: New York, 1998; 75, pp 182-
209.

(2) Leptomycin B and callystatin A: (a) Kobayashi, M.; Wang, W.;
Tsutsui, Y.; Sugimoto, M.; Murakami, N.Tetrahedron Lett.1998,39, 8291.
(b) Smith, A. B., III; Brandt, B. M.Org. Lett.2001, 3, 1685. (c) Murakami,
N.; Sugimoto, M.; Kobayashi, M.Bioorg. Med. Chem.2001,9, 57.

(3) Boronolide: Ghosh, A. K.; Bilcer, G.Tetrahedron Lett.2000,41,
1003 and references therein.

(4) Ratjadone: Christmann, M.; Bhatt, U.; Quitschalle, M.; Claus, E.;
Kalesse, M.Angew. Chem., Int. Ed.2000,39, 4364.

(5) Gonodiol: Surivet, J. P.; Vatèle, J. M.Tetrahedron1999,55, 13011
and references therein.

(6) Pironetin: Watanabe, H.; Watanabe, H.; Bando, M.; Kido, M.;
Kitahara, T.Tetrahedron1999,55, 9755.

(7) δ-Lactones isolated fromCryptocarya latifolia: Jorgensen, K. B.;
Suenaga, T.; Nakata, T.Tetrahedron Lett.1999,40, 8855.

(8) Umuravumbolide: Reddy, M. V. R.; Rearick, J. P.; Hoch, N.;
Ramachandran, P. V.Org. Lett.2001,3, 19.

(9) Spicigerolide: Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-
Garcia-Rojas, C. M.Tetrahedron2001,57, 47.

(10) For a review, see: Martin, S. F.; Guinn, D. E.Synthesis1991, 245.
(11) For more recent approaches: (a) Oppolzer, W.; Walther, E.; Pérez

Balado, C.; De Brabander, J.Tetrahedron Lett.1997,38, 809. (b) Hiscock,
S. D.; Hitchcock, P. B.; Parsons, P. J.Tetrahedron1998,54, 11567. (c)
Chow, H.; Fleming, I.J. Chem. Soc., Perkin Trans. 11998, 2651. (d) Cossy,
J.; Bauer, D.; Bellosta, V.Tetrahedron Lett.1999,40, 4187. (e) Pilli, R.
A.; Kleber, C.; Souto, C. R. O.; de Meijere, A.J. Org. Chem.1998,63,
7811.

(12) For asymmetric reactions using vinylogous urethane chemistry,
leading tosynunsaturated lactones, see: (a) Schlessinger, R. H.; Li, Y. J.;
Von Langen, D. J.J. Org. Chem.1996,61, 3226. (b) Dankwardt, S. M.;
Dankwardt, J. W.Tetrahedron Lett.1998,39, 4971.

(13) For RCM strategies, see: (a) Ghosh, A. K.; Cappiello, J.; Shin, D.
Tetrahedron Lett.1998,39, 4651. (b) Cossy, J.; Bauer, D.; Bellosta, V.
Tetrahedron Lett.1999,40, 4187. (c) Dirat, O.; Kouklovsky, C.; Langlois,
Y.; Lesot, P.; Courtieu, J.Tetrahedron: Asymmetry1999,10, 3197. (d)
Fuerstner, A.; Thiel, O. R.; Ackermann, L.; Schanz, H. J.; Nolan, S. P.J.
Org. Chem.2000,65, 2204.
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We wish to report herein an efficient catalytic asymmetric
one-step protocol to accessR,â unsaturatedδ-lactones using
a vinylogous aldol reaction.19

Recently, we have described the efficient formation of
vinylogous aldol product using silyl dienolate1 in good
yields, excellentγ: R regioselectivity, and moderate to good
enantioselectivity (Scheme 1).20

To observe the influence of aγ substituent on the course
(R/γ andsyn/antiratio) of the reaction, we envisioned the
reaction ofγ-substituted silyl-dienolate221 with benzalde-
hyde. Unexpected results were observed depending on the
nature of the dienolate activation (Scheme 2).

Using 10% of tetrabutylammonium triphenyldifluorosili-
cate TBAT as a racemic nonhygroscopic source of fluoride,22

the expected vinylogous aldol product3a was isolated in
45% yield in a disappointing 1:1syn/anti ratio. Changing
the fluoride source to a chiral nonracemic ammonium
fluoride,20c we were surprised to isolate only theR aldol
product in 68% yield, in a 1:1syn/antimixture.

Moving to the Carreira catalyst CuF‚(S)-tolBinap,23 a
14:86 mixture of the vinylogous aldol product3a and the

lactone 5a was isolated in 85% yield (Table 1). The
vinylogous aldol product3a was obtained with nosyn/anti
diastereoselectivity and very poor enantioselectivities (<5%
ee for bothsynandanti products). On the other hand, the
R,â unsaturated lactone5a was found to be highlyanti
selective (syn/anti > 2:98) in 87% ee, suggesting that a more
organized transition state had occurred.

The reaction with other aromatic aldehydes (Table 1,
entries 2-4) was also efficient, leading to lactones with
excellent diastereoselectivities (>2:98syn/anti) and high
enantioselectivities (85-91% ee and even 98% ee for the

(14) For a palladium-catalyzed rearrangement of vinyl-oxiranes, see:
Marion, F.; Le Fol, R.; Courillon, C.; Malacria, M.Synlett2001, 138.

(15) For an hydrozirconation-carbonylation strategy, see: Dupont, J.;
Dupont, A. J.Tetrahedron: Asymmetry1998,9, 949.

(16) For (Z)-selective olefination strategies, see: (a) Nicoll-Griffith, D.
A.; Weiler, L. Tetrahedron1991,47, 2733. (b) Yokokawa, F.; Fujiwara,
H.; Shiori, T.Tetrahedron Lett.1999,40, 1915.

(17) Forcis-alkyne reduction strategies, see: (a) Surivet, J. P.; Vatèle,
J. M.Tetrahedron1999, 55, 13011. (b) Watanabe, H.; Watanabe, H.; Bando,
M.; Kido, M.; Kitahara, T.Tetrahedron1999,55, 9755. (c) Marshall, J.
A.; Adams, N. D.J. Org. Chem.1999,64, 5201.

(18) For an elimination strategy, see: Jorgensen, K. B.; Suenaga, T.;
Nakata, T.Tetrahedron Lett.1999,40, 8855.

(19) For a general review on vinylogous Mukaiyama-aldol reaction,
see: Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G.Chem. ReV. 2000,
100, 1929.

(20) (a) Bluet, G.; Campagne, J. M.Tetrahedron Lett.1999,40, 5507.
(b) Bluet, G.; Campagne, J. M.Synlett2000, 221.(c) Bluet, G.; Campagne,
J. M. J. Org. Chem.2001,66, 4293.

(21) Botha, M. E.; Giles, R. G. F.; Yorke, S. C.J. Chem. Soc., Perkin
Trans. 11991, 85.

(22) (a) Pilcher, A. S.; Ammon, H. L.; Deshong, P.J. Am. Chem. Soc.
1995,117, 5166. (b) Handy, C. J.; Lam, Y.-F.; Deshong, P.J. Org. Chem.
2000,65, 3542.

(23) (a) Kruger, J.; Carreira, E. M.J. Am. Chem. Soc.1998,120, 837.
(b) Pagenkopf, B. L.; Kruger, J.; Stojanovic, A.; Carreira, E. M.Angew.
Chem., Int. Ed.1998,37, 3124.

Scheme 1. Vinylogous Mukaiyama-Aldol Reactions

Scheme 2a

a (a) TBAT 10%, THF, rt, 60%; (b)N-benzyl cinchodinium
fluoride 10%, THF, rt, 60%; (c) CuF‚(S)-tolBinap, 10%, rt, 85%
(3a/5a16/84).

Table 1. Vinylogous Mukaiyama Reactions of Dienolate2
with Various Aldehydes in the Presence of 10% of
CuF‚(S)-tolBinap

entry aldehyde
yield %
(4 + 5)

ratioa

5/4 no.
lactones 5
anti/syna ee

1 benzaldehyde 85 86/14 5a >98/2 87b, 98c

2 2-naphthaldehyde 95 80/20 5b >98/2 85d

3 2,3-dimethoxy
benzaldehyde

87 81/19 5c >98/2 91e, 98c

4 2-furaldehyde 60 50/50 5d >98/2 86f

5 (E)-cinnamal-
dehyde

60 70/30 5e >98/2 82g

6 isobutyraldehyde 95 64/36 5f >98/2 91h

a Determined by1H NMR on the crude product.b HPLC DAICEL-OD,
hexane/2-propanol 95/5.c After recrystallization (heptane).d HPLC DA-
ICEL-OJ, hexane/2-propanol 82/18.e HPLC DAICEL-OJ, hexane/2-pro-
panol 95/5.f HPLC DAICEL-OJ, hexane/2-propanol 95/5.g HPLC DAICEL-
OJ, hexane/2-propanol 90/10.h HPLC ChiralPAK AD, hexanes/ethanol 99/
1.
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recrystallized lactones5a and5c). Reaction with 2-furalde-
hyde proved to be less selective, leading to the lactone with
a high ee (86%) but generally in a 1:1 ratio of linear and
lactone products. The reactions with unsaturated (entry 5)
and aliphatic (entry 6) aldehydes were also efficient in terms
of anti/synratio (>98/2) and ee (respectively, 82%, 91%),
but the lactone/linear product ratios were somewhat lower
(respectively, 70/30, 64/36) compared to aromatic aldehydes.

To determine the absolute configuration of the lactones,
lactone5a was oxidized to the previously described enan-
tiomerically pure compound6.24 A rotation of -13.9 (for
87% ee) was found, in agreement with the reported rotation
of -17.5 described for the enantiomerically pureanti (2R,3S)
compound.

Consequently, asolute configurations of lactones5, ob-
tained with CuF‚(S)-tolBinap, were tentatively assigned as
shown in Scheme 4.

This methodology was then applied to chiral aldehyde8.25

The reaction of chiral aldehyde8 with the (S)-tolBinap ligand
(matched pair) led predominantly to thesyn/anti lactone
9a.11d,26 The other anti/anti lactone 9b26 could not be
observed by1H NMR of the crude product, and linear

products were found to be less than 10% of the mixture.
After flash chromatography, lactone9a was isolated in a
gratifying 60% yield. Using the (R)-tolBinap ligand with
aldehyde8 (mismatched pair), an inversion of the diaste-
reoselectivity could be observed: a 9/1 mixture of lactones
9b27 and 9a was obtained (the amount of linear products
was again found to be less than 10%). After purification by
flash chromatography, the mixture of lactones was isolated
in 55% yield.

According to the procedures described by Cossy,11d the
lactone9a was further transformed in three steps to the
Prelog-Djerassi lactone10. This procedure constitutes a
straightforward (four steps from aldehyde8) catalytic asym-
metric access to the Prelog-Djerassi lactone (Scheme 6).

In conclusion, the catalytic asymmetric vinylogous aldol
of γ-substituted dienolate constitutes a valuable one-step
route to R,â unsaturated lactones, as illustrated by the
synthesis of the Prelog-Djerassi lactone. Further optimization

(24) Van Draanen, N. A.; Arseniyadis, S.; Crimmins, M. T.; Heathcock,
C. H. J. Org. Chem.1991,56, 2499.

(25) Ley, S. V.; Anthony, N. J.; Armstrong, A.; Brasca, M. G.; Clarke,
T.; Culshaw, D.; Greck, C.; Grice, P.; Jones, A. B.; Lygo, B.; Madin, A.;
Sheppard, R. N.; Slawin, A. M. Z.; Williams, D. J.Tetrahedron1989,45,
7161.

(26) Marshall, J. A.; Adams, N. D.J. Org. Chem.1999,64, 5201.

(27) Diez-Martin, D.; Kotecha, N. R.; Ley, S. V.; Mantegani, S.;
Menendez, J. C.; Organ, H. M.; White, A. D.Tetrahedron1992,48, 7899-
7938.

Scheme 3a

a (a) RuCl3 6%, NaIO4 4.2 equiv, CH3CN/CCl4/H2O (1/1/1.5),
50 °C, 24 h, 35%.

Scheme 4

Scheme 5a

a (a) CuF‚(S)-tolBinap, 10%, rt, 60%; (b) CuF‚(R)-tolBinap, 10%,
rt, 55%.

Scheme 6
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and applications of this reaction to the synthesis of natural
products are currently under investigation.
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